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ABSTRACT 

 
We present the hardware and software specification of a 
quantitative, multidimensional and multispectral microscopy 
system designed for the detection of lung cancer using 
minimal samples of bronchoalveolar lavage (BAL). BAL 
samples were stained using FICTION: Fluorescence 
Immunophenotyping and Interphase Cytogenetics as a Tool 
for the Investigation of Neoplasms. Our system allows 
preliminary immunophenotypic detection of rare cancerous 
candidate cells, followed by accurate three-dimensional 
analysis of genomic integrity, to confirm or refute the initial 
assessment. Our results show that our automated analysis 
can accurately assist a human expert in the diagnostic 
evaluation of BAL samples. 
 
 

1. INTRODUCTION 
 
Lung cancer is one of the most prevalent causes of death in 
Western countries. Increasing its low survival rate –mainly 
due to late diagnosis- requires detecting the disease when it 
is still at microscopic, pre-surgical stages. To this end there 
is a push towards the discovery of new biological markers of 
pre-or-early neoplasia in biological fluids. Bronchoalveolar 
lavage (BAL) is a novel method to obtain a spreads that 
contains secretions, cells, soluble proteins, lipids and other 
chemical constituents from the epithelial surface of the 
lower respiratory tract. In patients with lung cancer, BAL 
samples may also contain few cancer cells exfoliated from 
the surface of the tumor. Finding these rare –low 
probability- cancer cells in BAL samples requires highly 
specific labeling of the cells and accurate detection.  
 
Our labeling and detection method works in two stages: 
first, candidate cancer cells are identified based on the 
expression of a cancer biomarker. Those cells are then 
screened for genomic aberrations, characteristic of solid 
tumors. This double labeling technique is known as 
Fluorescence Immunophenotyping and Interphase 
Cytogenetics as a Tool for the Investigation of Neoplasms 
(FICTION) [1]. FICTION combines immunophenotypic 
labeling of the cancer biomarker with multiple fluorescent in 
situ hybridization (MFISH) of DNA sequences. 

Manually searching for rare tumor cells in macrophage and 
debris plagued BAL samples assumes consistent evaluation 
of immunofluorescence positivity, followed by three-
dimensional counting of multiple FISH targets. This 
requires long hours at the microscope in low ergonomic 
working environments. This is prone to serious inter and 
intra-observer variability, making automation highly 
recommended. In this paper we present the hardware and 
software specification of a mutidimensional, multispectral 
image acquisition and analysis platform for the analysis of 
FICTION samples. 
 
 

2. INTEGRATION 
 

Automating the analysis of FICTION samples involves 
automating three concurrent activities: image acquisition, 
analysis and storage. Unsupervised acquisition is available 
in most microscopy platforms. Software packages like 
Analysis, Metamorph, MATLAB or open-source 
alternatives like ImageJ or Octave can deal with non-too 
specific image analysis tasks. Some advanced image storage 
solutions exist, like OME and OMERO 
(www.openmicroscopy.org). However, no existing platform 
seamlessly integrates all three tasks. Our challenge was to 
integrate these three aspects to create a system able to 
perform efficient searching for cellular objects in 
fluorescence microscopy. Using a combination of available 
open source software and in-house written software, we 
have developed such a system. We now briefly describe 
some aspects of this integration task. 
 

2.1. Hardware 
 
Our hardware platform is composed of a fully 

automated microscope (Zeiss Axioplan2ie), a cooled-CCD 
monochrome camera (Photometrics CoolSnap cf by Roper 
Scientifics), an automated stage and slide loader by LUDL, 
a tunable LCD filter, the VariSpec; two multiprocessor 
workstations, linked by a Gigabit Ethernet connection and 
an RGB filter. The workstations both run RedHat Enterprise 
Linux. 
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2.2. Software Integration 

To implement the integration requirements, the system was 
divided in four parts: three reflect the imaging functions and 
one represents the integration. 

 

Figure 1. The simplified architecture, where each part 
corresponds to a different functionality of the system. 

2.2.1. The acquisition engine 
This part is responsible for the acquisition of the images, 
controlling the devices and storing the results in the 
database. It is connected to the database for image and 
metadata storage and receives requests from the task 
scheduler. The structure reflects a progressive abstraction 
from the hardware devices to the high-level operation layer. 
The lower layers deal with the communication with 
hardware devices, while the higher ones control operations 
that require complex interactions with the microscope. This 
progressive abstraction permits easy driver and device 
replacement, without having to modify the higher levels. 
The integration of the new driver is generated automatically 
by SWIG, open source software for wrapper generation [2]. 

5.2.2. The image processing and analysis server 
This part is responsible of all image processing and analysis 
tasks. The images are retrieved from and the results stored 
in the database. To integrate these procedures, we use an 
open source middleware for component networking, called 
the Internet Communication Engine (ICE). ICE provides a 
set of libraries and protocols that enable the communication 
between software components. It currently supports the 
creation of servlets in different languages (C++, Java PHP, 
Python, Ruby, C#, Visual Basic), which means that the 
analysis routines can be written in any of these languages. 
The interface to the procedures is specified in the Slice 
language: the client library and the server stub are compiled 
to Java and C++ respectively. All image analysis tools were 
programmed as C extensions of the Diplib 3D image 
processing library (www.diplib.org).  

2.2.3. The task scheduler 
This module is responsible for the coordination of all 
acquisition and image processing tasks. Jobs are received 

from the user level, split into tasks and assigned to either the 
acquisition engine or the image processing and analysis 
server. The job scheduler is the main component, which 
enables the concurrent management of job queuing and 
execution. To this purpose, an open-source job scheduler is 
used, named Quartz (http://www.opensymphony.com 
/quartz), which has been used successfully both in the 
academic and in industry. 
 
2.2.4. The data   
Keeping track of the images resulting from the analysis is a 
critical role in any integrated imaging application. In our 
application, the information is progressively added to a 
hierarchical data structure, which has been tailor-written for 
this. In C, this is implemented as a structure with pointers, 
which results in a tree of objects. Each node contains the 
information from the analysis and keeps track of all the data 
resulting from the algorithms. The database layer is a 
relational database coupled with an object-relational 
mapping system written in Perl and remotely accessible 
through XML-RPC. The database system has been 
developed by the OME Consortium 
(http://www.openmicroscopy.org).  The information from 
the hierarchical data structure can be easily accessed from 
DipLib and MATLAB. 

 
3. IMAGE ACQUISITION AND ANALYSIS 

 
3.1 Sample preparation 
We used three training samples and two validation samples. 
One sample (T1) was a spread of cells from a lung cancer 
cell line (H460). The remaining four samples were BAL 
samples sprinkled with known amounts of H460 cancer 
cells. The samples contained 36 (T2), 71 (T3), 49 (V1) and 
99 (V2) cancer cells, respectively. The base BAL material 
was obtained from a patient suffering from severe bronchial 
infection, but with no symptoms of lung cancer. All samples 
were stained using an antibody for the nuclear protein 
hnRNPA1, which is highly expressed in nearly all lung 
cancers but is expressed only at basal levels in normal lung 
epithelia. The samples were also labeled with the LaVysion 
kit, which contains four FISH probes that target three 
common loci of genetic alterations in lung cancer (5p15.2
SpectrumGreen, 8q24 SpectrumOrange, 7p12SpectrumRed), 
along with a centromeric probe (6c SpectrumAqua). 
 
3.2 Image acquisition 
The entire sample was scanned at low magnification (20X) 
Three spectral channels -Alexa 350 (B), SpectrumAqua (G) 
and SpectrumRed (R)- were acquired. All images were 
preprocessed and analyzed to detect immunopositive cells. 
Areas occupied by candidate cancer cells were then revisited 
and re-imaged as Z-stacks of images (40X) in all spectral 
channels. Nuclei in the stacks were analyzed for the 
detection and enumeration of  FISH probes.  
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3.3 Image Analysis 
3.3.1 2D Analysis 
Preprocessing.  Before the analysis, we corrected for the 
inhomogeneity of the light source and intensity fluctuations 
caused by uneven flurochrome distribution. Finally, short 
spectral shifts were eliminated by shifting the images a 
number of pixels precalculated on test images. 
 
Detection and classification of nuclei. We applied an 
adaptive threshold [3] on the Alexa 350 channel to separate 
all nuclear objects from the background. This left us with all 
areas occupied by immunopositive cells, but also with 
numerous macrophages, and other cell types that showed 
some background fluorescence. Most macrophages and 
immunonegative nuclei are white because their fluorescent 
emission is very similar in the three channels.  
Immunopositive cells instead appear as blue-redish objects 
with medium to high chromatic purity. Highly saturated -
blue- objects correspond to organic debris. It is therefore 
easy to reject white and very pure blue objects by fixed-
thresholding the Hue (H) and Saturation (S) channels of the 
images. To that end, we converted the RGB image to HIS 
format and then fixed-thresholded the images using the hue 
(H) and saturation (S) channels. We avoided false negatives 
by forcing that no immunopositive cell be classified as 
immunonegative. Then we measured the morphology of all 
segmented objects to classified them as isolated nuclei or 
clusters of nuclei using Sequential Minimal Optimization-
Support Vector Machine (SMO-SVM) [4]. We used a linear 
SVM classifier trained to avoid false positives (clusters 
classified as nuclei), to prevent incorrect spot counting. 

 
3.3.2 3D Analysis 
Preprocessing.  Similar to what was described for 2D, the 
acquired Z-stacks were pre-processed to correct for 
inhomogeneities of the light, background fluctuations and 
chromatic shifts. Then, the images were deconvolved using 
a Maximum Likelihood Estimation algorithm provided by 
the Huygens (SVI, The Netherlands) software. Finally we 
used blind spectral unmixing to eliminate cross-talk between 
the spectral channels due to overlap of the spectra. 
 
Segmentation of nuclei and FISH signals. Nuclear 
volumes were extracted from the background using an 
adaptive threshold applied to the immunofluorescence 
channel. Then all areas occupied by nuclei were analyzed in 
the corresponding FISH channels. FISH signals were 
segmented using a Top Hat algorithm with morphological 
reconstruction (Figure 2d-f).  
 

4. RESULTS 
 
4.1 Training of the classifiers 
4.1.1. Detection of immunopositive cells 

Thresholding T2 and T3 BAL training samples produced 
9783 and 11573 objects respectively, 36 (T2) and 71 (T3) of 
which were immunopositive cancer cells. Based on the H 
and S threshold values, our algorithm detected all 36 (T2) 
and 71 (T3) immunopositive tumor cells, along with 60 (T2) 
and 32 (T3) objects with tumoral origin. Therefore the 
combined classification error was 0.43%. All errors 
corresponded to false positives (FP) since the threshold was 
purposely set to avoid false negative results (FN). 
 
4.1.2. Classification of nuclei vs. clusters of nuclei 
One hundred and two (102) objects segmented from sample 
T1 were used -51 isolated nuclei and 51 clusters of nucle-). 
All but 3 objects (isolated nuclei classified as cluster) were 
correctly segmented. Therefore, the classification error was 
2.94%, all of which were, as intended, false negatives. 
 
4.2 Validation 
4.2.1. Detection of immunopositive cells 
We found 2259 (V1) and 2467 (V2) objects in the two BAL 
validation samples, of which 49 (V1) and 99 (V2) were 
immunopositive tumor cells. The analysis found also 26 
(V1) and 50 (V2) objects, corresponding mainly to 
macrophages, immunonegative cells and organic debris. 
Therefore, all cancer cells sprinkled in the BAL samples 
were satisfactorily found. Thus, the classification errors 
were 1.15% (V1) and 2% (V2). All errors were, as intended, 
false positive (FP) results. 
 
4.2.2. Classification of nuclei vs. clusters of nuclei 
The linear SVM classifier was presented with all the 
detected objects extracted from BAL validation samples V1 
and V2. All clusters of cancer cells were properly classified 
as such. Seventeen percent (17.3%) of isolated cancer cells 
were wrongly classified as clusters, due to the high demand 
to avoid false positive results imposed on the classifier. 
These errors can be easily detected and dealt with through 
final visual analysis of the FISH enumeration results. 
 
4.2.3. FISH segmentation 
All objects -isolated or clustered- were imaged in 3D and 
analyzed to detect FISH signals in all four channels. The 
enumeration results were then presented to the user for 
validation. It is important to note that from the total number 
of objects existing in the samples -2259 in V1 and 2467 in 
V2- the cytopathologist only had to review the enumeration 
results in 75 (V1) and 149 (V2) objects. This -making use of 
our graphical user interface- can be easily done at the 
computer in less than 30 minutes, compared to the 
approximately 6 hours that would take visually analyzing 
both samples following the standard existing protocol. 
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(a) (b) (c) 

 
(d) (e) (f) 

Figure 2.  Image segmentation process. (a) Original RGB image created from the SpectrumRed (R), SpectrumAqua (G) and Alexa350 
(B) fluorescent channels. (b) Immunofluorescence channel showing possible confusion between immunopositive cells (bluish in a) and 
macrophages (white in a). (c) Binary mask obtained after thresholding the immunofluorescence channel and classifying the segmentation 
results. Macrophages (blue) are eliminated after converting to HSI and thresholding the H and S values. Then the SVM classifies objects 
as nuclei (green) or clusters of nuclei (red) using morphological information. (d) Representative slice from a Z pseudo-colored stack that 
contains the counterstaining and 4 FISH DNA probes. (e) Segmentation of the nuclei (violet) and DNA probes shown in d. (f) 3D 
reconstruction of the entire imaged shown in d. 

 
5. CONCLUSIONS  

 
We have presented the hardware and software 
specification of an automated microscopy system to be 
applied to the unsupervised detection of rare cancer cells 
in minimal samples of lung cancer. The design of the 
hardware allows seamless integration of image 
acquisition,  analysis and storage. The analysis protocol is 
detects immunopositive tumor cells in 2D and calculates 
the copy number of four DNA sequences to determine the 
genomic integrity of the cells, thus confirming or 
rejecting their tumoral origin. This task, extremely time 
consuming and error prone when done manually at the 
microscope, is in our hands free from false negative 
results.  The moderate number false positive results -
misclassified macrophages, negative epithelial or 
oropharingeal cells- can be easily eliminated from the 
analysis by looking at their genomic content, since 
macrophages do not hybridize any of the DNA probes and 
normal epithelial and oropharingeal cells have normal 
pattern of FISH signals. Therefore, after the automated 
computer work, the user is left with the simple task of 
reviewing copy number results of a relatively low number 
of cells. 
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